Smart Device

Optional Frame Selection Algorithm for Adaptive Symmetric Service of Augmented Reality Big Data on Smart Devices

May 2016. By Young-Sik Jeong

Keyword: Augmented reality, Heterogeneous adaptiveness, Smart device, Frame rate, Snapshot

Figure 1. Overall module architecture of RISBD.

Following recent technological advances in diverse mobile devices, including smartphones, tablets and smartwatches, in-depth studies aimed at improving the quality of augmented reality (AR) are currently ongoing. Smartphones feature the essential elements of AR implementation, such as a camera, a processor and a display in a single device. As a result, additional hardware expansion for AR implementation has become unnecessary, popularizing AR technology at the user level. In the early stages, low-level AR technology was used mainly in limited fields, including simple road guides and marker-based recognition. Due to advances in AR technology, the range of usage has expanded as diverse technologies and purposes are combined. Users™ expectations of AR technology have also increased with this trend, and a high quality of service (QoS), with high-resolution, high-quality images, is now available. However, there are limitations in terms of processing speed and graphic treatment with smart devices, which, due to their small size, have inferior performance compared to the desktop environment when processing data for the implementation of high-resolution, high-quality images.

This research proposes an optional frame-selection algorithm (OFSA), which eliminates the unnecessary work involved with redundant frames during rendering for adaptive symmetric service of augmented reality big data on smart devices. Moreover, the memory read-write delay of the internally-operating OFSA, is minimized by adding an adaptive operation function. It is possible to provide adaptive common AR images at an improved frame rate in heterogeneous smart devices with different levels of performance.